Giải bài tập

Giải bài 43, 44, 45, 46 trang 111, 112 SBT Toán 9 tập 1

Giải bài tập trang 111, 112 bài 3 bảng lượng giác Sách bài tập (SBT) Toán 9 tập 1. Câu 43: Cho hình…

Câu 43. Trang 111 Sách Bài Tập (SBT) Toán 9 Tập 1

Cho hình:

Bạn Đang Xem: Giải bài 43, 44, 45, 46 trang 111, 112 SBT Toán 9 tập 1

Biết:

\(\widehat {ACE} = 90^\circ ,AB = BC = CD = DE = 2cm.\) 

Hãy tính:

a) AD, BE;

b) \(\widehat {DAC}\);

c) \(\widehat {BXD}\).

Gợi ý làm bài:

a) Ta có:

\(AC = AB + BC = 2 + 2 = 4\left( {cm} \right)\)

Áp dụng định lí Pi-ta-go vào tam giác vuông ACD, ta có:

\(A{D^2} = A{C^2} + C{D^2} = {4^2} + {2^2} = 16 + 4 = 20\)

\( \Rightarrow AD = \sqrt {20}  = 2\sqrt 5 \left( {cm} \right)\)

Mặt khác: \(CE = CD + DE = 2 + 2 = 4\left( {cm} \right)\)

Áp dụng định lí Pi-ta-go vào tam giác vuông BEC, ta có:

\(B{E^2} = B{C^2} + C{E^2} = {2^2} + {4^2} = 4 + 16 = 20\) 

Xem Thêm : Giải bài 50, 51, 52, 53 trang 17 SBT Toán 7 tập 1

\( \Rightarrow BE = \sqrt {20}  = 2\sqrt 5 \left( {cm} \right)\)

b) Tam giác ACD vuông tại C nên ta có: \(tg\widehat {DAC} = {{CD} \over {AC}} = {2 \over 4} = {1 \over 2}\)

Suy ra: \(\widehat {DAC} \approx 26^\circ 34’\)

Ta có: \(\widehat {CDA} = 90^\circ  – \widehat {CAD} \approx 90^\circ  – 26^\circ 34′ = 63^\circ 26’\)

Trong tứ giác BCDX, ta có:

\(\widehat {BXD} = 360^\circ  – (\widehat C + \widehat {CDA} + \widehat {CBE})\)

\( = 360^\circ  – (90^\circ  + 63^\circ 26′ + 63^\circ 26′) = 143^\circ 8′.\) 

 


Câu 44. Trang 112 Sách Bài Tập (SBT) Toán 9 Tập 1

Đoạn thẳng LN vuông góc với đoạn thẳng AB tại trung điểm N của AB; M là một điểm của đoạn thẳng LN và khác với L,N. Hãy so sánh các góc \(\widehat {LAN}\) và \(\widehat {MBN}\).

Gợi ý làm bài:

Tam giác ALN vuông tại N nên ta có:

\(tg\widehat {LAN} = {{NL} \over {AN}}\)      (1)

Tam giác BNM vuông tại N nên ta có:

\(tg\widehat {MBN} = {{NM} \over {NB}}\)        (2)

Mặt khác:        AN = NB (gt)                   (3)

                        NL > NM                          (4)

Từ (1), (2), (3) và (4) suy ra: \(tg\widehat {MBN}

Suy ra: \(\widehat {MBN}

Sachbaiatp.com


Xem Thêm : Giải bài 10, 11, 12, 13, 14, 15 trang 12, 13 SGK toán 8 tập 2

Câu 45. Trang 112 Sách Bài Tập (SBT) Toán 9 Tập 1

Không dùng bảng lượng giác và máy tính bỏ túi, hãy so sánh:

a) \(\sin 25^\circ \) và \(\sin 70^\circ \);                           b) \(\cos 40^\circ \) và \(\cos 75^\circ \) ;

c) \(\sin 38^\circ \) và \(\cos 38^\circ \) ;                           d) \(\sin 50^\circ \) và \(\cos 50^\circ \).

Gợi ý làm bài:

a) Với \(0^\circ  

Ta có: \(25^\circ  

b) Với \(0^\circ  

Ta có: \(40^\circ    cos}}75^\circ \)

c) Với \(0^\circ  

Ta có: \(38^\circ  + 52^\circ  = 90^\circ \), suy ra: \(\cos 38^\circ  = \sin 52^\circ \)

Vì \(38^\circ  

d) Với \(0^\circ  

Ta có: \(40^\circ  + 50^\circ  = 90^\circ ,\) suy ra: \(\sin 50^\circ  = \cos 40^\circ \)

Vì \(40^\circ   \cos 50^\circ \) hay \(\sin 50^\circ  > \cos 50^\circ \)

 


Câu 46. Trang 112 Sách Bài Tập (SBT) Toán 9 Tập 1

Không dùng bảng lượng giác hoặc máy tính bỏ túi,hãy so sánh:

a) \(tg50^\circ 28’\) và \(tg63^\circ \);                             b) \(\cot g14^\circ \) và \(\cot g35^\circ 12’\);

c) \(tg27^\circ \) và \(\cot g27^\circ \);                              d) \(tg65^\circ \) và \(\cot g65^\circ \).

Gợi ý làm bài:

a) Với \(0^\circ  

Ta có: \(50^\circ 28′

b) Với \(0^\circ  

Ta có: \(14^\circ   cotg35°12’

c) Với \(0^\circ  

Ta có: \(27^\circ  + 63^\circ  = 90^\circ ,\) suy ra: \(\cot g27^\circ  = tg63^\circ \)

Vì \(27^\circ  

d) Với \(0^\circ  

Ta có: \(65^\circ  + 25^\circ  = 90^\circ \) nên tg65° =cotg25°

Vì 25 cotg65  hay tg65° > cotg65°.

Truong Cao Dang Nghe Dong Nai

Nguồn: https://cdndn.edu.vn
Danh mục: Giải bài tập

Có thể bạn cần

Back to top button