Giải bài tập trang 45, 46 bài 1 nhắc lại và bổ sung các khái niệm về hàm số SGK Toán 9 tập 1. Câu 5: Vẽ đồ thị hàm số y = x và y =2x trên cùng một mặt phẳng tọa độ Oxy…
Bài 5 trang 45 sgk Toán 9 tập 1
5. a) Vẽ đồ thị hàm số y = x và y =2x trên cùng một mặt phẳng tọa độ Oxy (h.5).
Bạn Đang Xem: Giải bài 5, 6, 7 trang 45, 46 SGK Toán 9 tập 1
b) Đường thẳng song song với trục Ox và cắt trục Oy tại điểm có tung độ Y = 4 lần lượt cắt các đường thẳng y = 2x, y = x tại hai điểm A và B.
Tìm tọa độ của các điểm A, B và tính chu vi, diện tích của tam giác OAB theo đơn vị đo trên các trục tọa độ là xentimét.
Giải:
a) Xem hình trên và vẽ lại
b) A(2; 4), B(4; 4).
Tính chu vi ∆OAB.
Dễ thấy AB = 4 – 2 = 2 (cm).
Áp dụng định lý Py-ta-go, ta có:
\(\eqalign{
& OA = \sqrt {{2^2} + {4^2}} = 2\sqrt 5 \left( {cm} \right) \cr
& OB = \sqrt {{4^2} + {4^2}} = 4\sqrt 2 \left( {cm} \right) \cr} \)
Tính diện tích ∆OAB.
Gọi C là điểm biểu diễn số 4 trên trục tung, ta có:
\(\eqalign{
& {S_{\Delta OAB}} = {S_{\Delta OBC}} – {S_{\Delta OAC}} \cr
& = {1 \over 2}OC.OB – {1 \over 2}OC.AC \cr
& = {1 \over 2}{.4^2} – {1 \over 2}.4.2 = 8 – 4 = 4\left( {c{m^2}} \right) \cr} \)
Bài 6 trang 45 sgk Toán 9 tập 1
6. Cho các hàm số y = 0,5x và y = 0,5x + 2
a) Tính giá trị y tương ứng với mỗi hàm số theo giá trị đã cho của biến x rồi điền vào bảng sau:
b) Có nhận xét gì về các giá trị tương ứng của hai hàm số đó khi biến x lấy cùng một giá trị ?
Giải:
a) Thay giá trị của x vào từng hàm số ta có kết quả như bảng dưới đây:
x |
-2,5 |
-2,25 |
-1,5 |
-1 |
0 |
1 |
1,5 |
Xem Thêm : Giải bài 1, 2, 3 trang 11 Vở bài tập Toán lớp 5 tập 1 2,25 |
2,5 |
y = 0,5x |
-1,25 |
-1,125 |
-0,75 |
-0,5 |
0 |
0,5 |
0,75 |
1,125 |
1,25 |
y = 0,5x + 2 |
0,75 |
0,875 |
1,25 |
1,5 |
2 |
2,5 |
2,75 |
3,125 |
3,25 |
b) Khi x lấy cùng một giá trị thì giá trị của hàm số y = 0,5x + 2 lớn hơn giá trị của hàm số y = 0,5x là 2 đơn vị.
Bài 7 trang 46 sgk Toán 9 tập 1
Cho hàm số y = f(x) = 3x.
Cho x hai giá trị bất kì x1, x2 sao cho x1 2 .
Hãy chứng minh f(x1 ) 2 ) rồi rút ra kết luận hàm số đã cho đồng biến trên R.
Giải:
Từ x1 2 và 3 > 0 suy ra 3x12 hay f(x1) 2 ).
Vậy hàm số đã cho đồng biến trên R.
Truong Cao Dang Nghe Dong Nai
Nguồn: https://cdndn.edu.vn
Danh mục: Giải bài tập